
Sistemi Intelligenti Avanzati
Corso di Laurea in Informatica, A.A. 2020-2021

Università degli Studi di Milano

Uncertainty in Search

Matteo Luperto
Dipartimento di Informatica
matteo.luperto@unimi.it

1Sistemi Intelligenti Avanzati, 2020/21

mailto:matteo.luperto@unimi.it


Search Algorithms

In the first lessons, we have investigated how to solve search problems:
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Initial state: A

Desired solution: any path to goal state E

Actions: move between two connected nodes

Transitions: agent is in a new node

Costs: cost for traversing the edge

Heuristic function: estimate of how a state is 
promising
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Search Algorithms

However, we have made several assumption

1. Discrete and finite search space
vs Continuous and/or infinite search space

2. Deterministic transitions
vs Stochastic transitions

3. Observable States
vs partially-observable states

4. Known Search Space
vs unknown search space

5. Offline search
vs online search 

(some of) these assumptions are not admissible for several problems
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Discrete vs Continuous State Space
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Discretization can be used to 
reduce a continuous problem 

to a discrete one 
(e.g. path planning in grid 

maps for robots)

If this is not possible, 
continuous problems are 

usually solved by different 
approaches

From Russel, Norvig, AI A Modern Approach 3ed, Pearson, 2010



Discrete vs Continuous State Space
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Discretization can be used to 
reduce a continuous problem 

to a discrete one 
(e.g. path planning in grid 

maps for robots)

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Discrete vs Continuous State Space
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Discretization can be used to 
reduce a continuous problem 

to a discrete one 
(e.g. path planning in grid 

maps for robots)

If this is not possible, 
continuous problems are 

usually solved by different 
approaches

From Russel, Norvig, AI A Modern Approach 3ed, Pearson, 2010



Deterministic vs Stochastic Transitions

Sistemi Intelligenti Avanzati, 2020/21 7

From Thrun Burgard Fox, Probabilistic Robotics, MIT Press 2006

In general, we want to know 
the outcome of an action

In practice, this is not often 
possible



Deterministic vs Stochastic Transitions

Open Loop = we trust the outcome of an action
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ACTION

Assuming that an action has a deterministic outcome is like moving 
around blindfolded.

Input Output



Deterministic vs Stochastic Transitions
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ACTION

What we do: use perception to observe the outcome of an action

Input Output

PERCEPTION



Stochastic Transitions

Initial State: S

Goal State: G

Actions: , costs = 1

Stochastic Transitions:  P = 0.6 desired state, P = 0.4 of another state
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Stochastic Transitions

Initial State: S

Goal State: G

Actions: , costs = 1

Stochastic Transitions:  P = 0.6 desired state, P = 0.4 another state
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Stochastic Transitions

Initial State: S

Goal State: G

Actions: , costs = 1

Stochastic Transitions:  P = 0.6 desired state, P = 0.4 another state
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Stochastic Transitions

Applying both possible actions, I have a != 0 probability of ending in 
the same states

How can we model this for applying a search strategy?
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AND-OR Search Trees

• OR nodes are state nodes (squares), where some action must be chosen

• AND nodes (circles) represents every possible outcome of an action

• A solution is a subtree that
1. Has a goal node at every leaf
2. Specifies on action of each OR nodes
3. Includes every outcome branch at each of its AND nodes
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AND-OR Search Trees

• Stochastic transitions increase the branching factor and the search 
space

• LOOPS should be detected as are frequent
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AND-OR Search Trees

• Stochastic transitions increase the branching factor and the search 
space

• LOOPS should be detected as are frequent

Sistemi Intelligenti Avanzati, 2020/21 16

S G

1 2 3 4 5 6

1
2

3
4

5
6

 

3,2

4,2 2,22,2 4,2



AND-OR Search Trees

• Stochastic transitions increase the branching factor and the search 
space

• LOOPS should be detected as are frequent

• A solution is a subtree where every leaf is a goal node
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AND-OR Search Trees
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AND-OR Search Trees
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AND-OR Search Trees
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AND-OR Search Trees
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AND-OR Search Trees
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Finding a solution could be unfeasible / costly even for simple problems

S

G

1 2

1
2

D
R



Observable and Partially-Observable States
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1. Problem formulation 
(with stochastic transitions)

2. We solve the problem 
(offline) using a search 
algorithm

3. We find a solution (e.g., 
using AND-OR Search 
methods)

What happens if we want to apply such solution?



Observable and Partially-Observable States
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ACTIONInput Output

PERCEPTION

• We have a plan, but

• We do not know the outcome 
of action, how we know our 
state?

• We use perception to observe 
the state we ended with



Observable and Partially-Observable States
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We start in S, and we try to go down, however, we end  in (2,2):

• Fully-observable state = we know that we are in (2,2) with 
perception



Observable and Partially-Observable States
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However, in several problems also this assumption does not hold.

We need also to estimate the state we end with after an action as the 
environment is only partially-observable.



Planning under uncertainty

Am I always sure 
about what’s 

going on?

Are the effects of 
my actions 
perfectly 

predictable?

Deterministic 
vs 

Stochastic 
transitions

Fully-observable 
vs 

Partially-observable
states
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Searching with Partial Observation

The agent does not know its exact state, but it has a

Belief states, an estimate of its current states given the sequence of 
actions and percepts up to that point

• A set of states

• A set of actions

• A transition model

• A set of costs

• A goal test

• Belief states             new!
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Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

a) a discrete and known grid map

b) initial cell is known 
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We have a robot, with perception, it moves around



Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

1. Action: 
“I want to move forward 2m”
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The agent tries to perform some 
action, having a transition model



Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

1. Action: 
“I want to move forward 2m”

2. Prediction
“I am on the correct position”
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The transition model computes, 
from its previous belief, a predicted 
belief ()



Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

1. Action: 
“I want to move forward 2m”

2. Prediction
“I am on the correct position”
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The predicted belief () is a set of 
states as we do not know the actual 

outcome of the action. 
(let’s consider one belief state for the sake of simplicity)



Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

1. Action: 
“I want to move forward 2m”

2. Prediction
“I am on the correct position”

3. Observation prediction
“I should see walls”
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From the predicted belief () the 
robot can estimate the possible 

percept



Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

1. Action: 
“I want to move forward 2m”

2. Prediction
“I am on the correct position”

3. Observation prediction
“I should see walls”

4. Perception:
“I see this”
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We can observe if 
perception evidence support our 

belief or if there are discrepancies 



Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

1. Action: 
“I want to move forward 2m”

2. Prediction
“I am on the correct position”

3. Observation prediction
“I should see walls”

4. Perception:
“I see this”

5. Update
“So I should be here ”
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We match the belief and perception to find the error in 
the prediction and compute the new belief ()



Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

1. Action: 
“I want to leftwards 1m”

2. Prediction
“I am on the correct position”

3. Observation prediction
“I should see walls”

4. Perception:
“I see this”

5. Update
“So I should be here ”
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We start again from 1., with  as initial belief 



Searching with Partial Observations: an example

Initial state
I know where am I and  I have a model of possible states

1. Action: 
“I want to leftwards 1m”

2. Prediction
“I am on the correct position”

3. Observation prediction
“I should see walls”

4. Perception:
“I see this”

5. Update
“So I should be here ”
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We start again from 1., with  as initial belief 

Th

We have already seen a similar problem when talking about robots, 
as the localization problem;

However, this mechanism is common when facing 
Partially-Observable and Stochastic problems.



PO-problem definition

Let’s start with a “simpler” problem: 
Partially Observability but without observations (sensorless)

• A problem P, defined by 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃, a transition model 𝑅𝑒𝑠𝑢𝑙𝑡𝑃,
𝐺𝑜𝑎𝑙𝑇𝑒𝑠𝑡𝑃, and 𝐶𝑜𝑠𝑡𝑃

• Belief states: if P has N states, we have up  to  2𝑁 states

ex: 
𝑏 ∈ {
1,1 ,
1,2 ,
2,1 ,
2,2 ,
1,1 , 1,2 ,
1,1 , 2,2 ,

… ,
1,1 , 1,2 , 2,1 , 2,2 }
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PO-problem definition

Let’s start with a “simpler” problem: 
Partially Observability but without observations (sensorless)

• A problem P, defined by 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃, a transition model 𝑅𝑒𝑠𝑢𝑙𝑡𝑃,
𝐺𝑜𝑎𝑙𝑇𝑒𝑠𝑡𝑃, and 𝐶𝑜𝑠𝑡𝑃

• Belief states: if P has N states, we have up  to  2𝑁 states

• Initial states: possibly more than one

• Actions: that can be performed from all belief states,
ex: 
𝑏 = 𝑠1, 𝑠2 , 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃(𝑠1) ≠ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃 (𝑠2),

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑏 =ራ

𝑠∈𝑏

𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃(𝑠)
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PO-problem definitio

Let’s start with a “simpler” problem: 
Partially Observability but without observations (sensorless)

• A problem P, defined by 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃, a transition model 𝑅𝑒𝑠𝑢𝑙𝑡𝑃,
𝐺𝑜𝑎𝑙𝑇𝑒𝑠𝑡𝑃, and 𝐶𝑜𝑠𝑡𝑃

• Belief states: if P has N states, we have up  to  2𝑁 states

• Initial states: possibly more than one

• Actions: that can be performed from all belief states,

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑏 =ራ

𝑠∈𝑏

𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃(𝑠)

• Transition model: each possible state that I can reach from 
performing all actions allowed in all states in the belief b

𝑏′ = 𝑅𝑒𝑠𝑢𝑙𝑡 𝑏, 𝑎 = 𝑠′: 𝑠′ ∈ 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑃 𝑠, 𝑎 , 𝑠 ∈ 𝑏

= ራ

𝑠∈𝑏

𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑃 𝑠, 𝑎 .
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PO-problem definition

Let’s start with a “simpler” problem: 
Partially Observability but without observations (sensorless)

• A problem P, defined by 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃, a transition model 𝑅𝑒𝑠𝑢𝑙𝑡𝑃,
𝐺𝑜𝑎𝑙𝑇𝑒𝑠𝑡𝑃, and 𝐶𝑜𝑠𝑡𝑃

• Belief states: if P has N states, we have up  to  2𝑁 states

• Initial states: possibly more than one

• Actions: that can be performed from all belief states,

• Transition model: each possible state that I can reach from 
performing all actions allowed in all states in the belief b

• Goal-test: a plan that reach a belief where all states are goals; 
agents may reach a goal state before but they can’t know that

• Path-Cost
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PO-problem definition – without observations

Let’s start with a “simpler” problem: 
Partially Observability but without observations (sensorless)

• After we have defined a problem like this, 
we can apply a Search Strategy as in Observable problem

• However, we have increased (a lot!) the set of state-space and the 
branching factor

• The problem (likely) is no longer feasible

We have transformed a partially-observable problem in the state 
space into a (much bigger) fully-observable problem into the belief-
state space
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PO-problem definition

Partially Observability 

A problem P, defined by 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃, a transition model 𝑅𝑒𝑠𝑢𝑙𝑡𝑃,
𝐺𝑜𝑎𝑙𝑇𝑒𝑠𝑡𝑃, and 𝐶𝑜𝑠𝑡𝑃

• Belief states: if P has N states, we have up  to  2𝑁 states

• Initial states: possibly more than one

• Actions: that can be performed from all belief states,

• Transition model: each possible state that I can reach from 
performing all actions allowed in all states in the belief b

• Goal-test: a plan that reach a belief where all states are goals; 
agents may reach a goal state before but they can’t know that

• Path-Cost
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PO-problem definition

Partially Observability 

A problem P, defined by 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃, a transition model 𝑅𝑒𝑠𝑢𝑙𝑡𝑃,
𝐺𝑜𝑎𝑙𝑇𝑒𝑠𝑡𝑃, and 𝐶𝑜𝑠𝑡𝑃

• Prediction stage: the states that the agent expects to reach doing 
an action a from its actual belief b

෠𝑏 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑏, 𝑎)
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PO-problem definition

Partially Observability 

A problem P, defined by 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃, a transition model 𝑅𝑒𝑠𝑢𝑙𝑡𝑃,
𝐺𝑜𝑎𝑙𝑇𝑒𝑠𝑡𝑃, and 𝐶𝑜𝑠𝑡𝑃

• Prediction stage: the states that the agent expects to reach doing 
an action a from its actual belief b

෠𝑏 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑏, 𝑎)

• Observed prediction: the set of percepts that could be observed 
from the predicted belief states

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑠 ෠𝑏 = {𝑜 ∶ 𝑜 = 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 𝑠 , 𝑠 ∈ ෠𝑏}
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PO-problem definition

Partially Observability 

A problem P, defined by 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃, a transition model 𝑅𝑒𝑠𝑢𝑙𝑡𝑃,
𝐺𝑜𝑎𝑙𝑇𝑒𝑠𝑡𝑃, and 𝐶𝑜𝑠𝑡𝑃

• Prediction stage: the states that the agent expects to reach doing 
an action a from its actual belief b

෠𝑏 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑏, 𝑎)

• Observed prediction: the set of percepts that could be observed 
from the predicted belief states

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑠 ෠𝑏 = {𝑜 ∶ 𝑜 = 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 𝑠 , 𝑠 ∈ ෠𝑏}

• Update: the set of states in the predicted belief ෠𝑏 that can generate 
the actual percept

𝑏𝑜 = 𝑈𝑝𝑑𝑎𝑡𝑒 ෠𝑏, 𝑜 = {𝑠: 𝑜 = 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 𝑠 , 𝑠 ∈ ෠𝑏}
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PO-problem

• Update: the set of states in the predicted belief ෠𝑏 that can generate 
the actual percept

𝑏𝑜 = 𝑈𝑝𝑑𝑎𝑡𝑒 ෠𝑏, 𝑜 = 𝑠: 𝑜 = 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 𝑠 , 𝑠 ∈ ෠𝑏

Note that: the update belief 𝑏𝑜 cannot be larger than the predicted 
belief ෠𝑏.

We keep multiple states in the belief 𝑏, which are used for the 
prediction step; the update step reduces the uncertainty by selecting 
only those state which can match the observations.

• New belief: putting all together, we move to the next step
𝑏′ = 𝑈𝑝𝑑𝑎𝑡𝑒(𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑏, 𝑎 , 𝑜)
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PO-problem definition: example
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From Russel, Norvig, AI A Modern Approach 3ed, Pearson, 2010



PO-problems

• New belief:
𝑏′ = 𝑈𝑝𝑑𝑎𝑡𝑒(𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑏, 𝑎 , 𝑜)

This formulation that iteratively integrates:

1. Prediction

2. Observation

3. Updates

Is used to solve different problems as monitoring, filtering, state 
estimation (where we integrate all past actions and percepts to 
estimate something).

We have already seen some examples as SLAM and Localization in 
robotics defined as Recursive-State Estimation problem and solved 
using probabilistic filtering techniques (EKF).
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PO-problems and Stochastic Transition

We shown how we can reduce PO-problems and/or stochastic 
transitions to fully-observable problems.

However, search algorithms are not usually directly applicable to such 
problems as the number of states and the branching factor easily 
makes such problems unfeasible to solve.

Note that: 
in fully observable problems

𝑏 = {𝑠}
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Markov Decision Processes (MDP)

• We assume full observability of states, but non-deterministic actions

• We cannot specify a transition function like before, instead we give a set of 
transition probabilities

• State transitions satisfy the Markov property: they depend only on the current 
state and not on states visited before

• The Markov property can be stated more generally: the state encodes all the 
information we need to pick an optimal action

Probability of reaching state s’, given that 
current state is s and action a is taken
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Example (Markovian, deterministic)
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MDPs

• Can we formulate the problem asking for a plan?
Stochastic transitions, so it would be too complex – large state 
space and branching factor.

• Plans are unfit for this situation: we cannot tell how to reach some 
goal by giving a mere sequence of actions
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MDPs

• Can we formulate the problem asking for a plan?
Stochastic transitions, so no – it would be too complex.

• Plans are unfit for this situation: we cannot tell how to reach some 
goal by giving a mere sequence of actions

But we have an observable state – we know the agent state.

• The Markov property allows the agent to consider only the current 
(known state) and not how the agent ended there
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MDPs

• Reward:
An agent receive, for each state, a reward 𝑅(𝑠)

• Policy: a function that maps, for each state, the action that the agent 
should do

𝜋 ∶ 𝑆 → 𝑎

Given the current state, it returns what action to play (deterministic)
An optimal policy 𝜋∗ is the one that yields the highest expected utility

• Policy  Execution:

1. Observe current state s

2. Execute action and reach next state 

3. Repeat from 1

Note that the policy is executed online as we cannot plan in 
advance
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MDPs

• We previously spoken about action costs, in MDPs we speak about immediate 
rewards

• Rewards can be thought as a generalization of what before we described by means 
of goal states specification

• Solving the MDP means finding a policy that maximizes the expected reward over 
some finite or infinite time horizon; such policy is called the optimal policy (𝜋∗)

The payoff that an agent gets performing an action a 
from state s to state s’ with an action a

Some features of policies
• Deterministic: given a state it does not randomize on which action to take
• Stationary (or memoryless): it does not change over time

In MDPs, up to some reasonable properties or common operative choices, these 
assumptions are not restrictive: there always exists an optimal policy that is deterministic 
and stationary
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Stationary optimal policies

• In infinite horizon MDPs, the optimal policy is stationary (or memoryless):

S

What’s the best 
decision to make?

• The Markov property says that all the information (transitions, rewards, …) we need 
to decide is encoded in the state. Thus, the answer to the above question only 
depends on the state, not on the time of visit. Does this hold in finite horizon 
settings?

• H = Horizon, how many action the agent can perform

• Is this true in finite horizon MDPs?

𝒔𝟎

𝒔𝟏 𝒔𝟒

𝒔𝟐 𝒔𝟓

𝒔𝟑 𝒔𝟔

(assume uniform probabilities)

𝜋∗

𝜋∗

The optimal policy depends on the 
time of visit!
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MDP Value iteration

• Let’s introduce the concept of value function

• How does it work?

• This quantity is defined as the expected cumulative reward that can be 
obtained by executing 𝝅 from s

An agent executing policy 𝜋 is in state s: how happy is the agent? 
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𝒔𝟎

𝒔𝟏

𝒔𝟐

𝒔𝟑

𝒔𝟒

𝒔𝟓

𝒔𝟔

0.5

0.5 0.3

0.7

0.6

0.4

Discount rewards more and 
more as they happen in the 
long future

Example with H=2
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MDP Value iteration (intuition)

Now the horizon is 2. The optimal policy would select the action that maximizes 
the immediate expected reward plus the expected discounted reward of acting 
optimally from the arrival state

The horizon is 1, there’s room for just one action. The best thing to do is 
selecting the action that maximizes the immediate expected reward

The horizon is zero, no action no reward

Expected value of the optimal policy from state s when H=k
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MDP Value iteration

• We obtain a recursive definition:

• In infinite horizon settings the above definition becomes the Bellman Equation

• Solved with iterative methods
• Encodes the Bellman’s principle of optimality

The utility of a state is the immediate reward for that state  plus the expected discounted 
utility of the next state, assuming that the agent chooses the optimal action.
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Partially-Observable MPD

• We can extend MDP to Partially Observable Problems

• PO-MDP: Partially-Observable Markov Decision Process

• As we have seen before, we need to define a policy for each 
belief state b

• The problem is much more difficult to solve, we can adapt Value 
Iteration or try different techniques to find the policy 
(e.g., Reinforcement Learning)
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Search Algorithms

However, we have made several assumption

1. Discrete and finite search space
vs Continuous and/or infinite search space

2. Deterministic transitions
vs Stochastic transitions

3. Observable States
vs partially-observable states

4. Known Search Space
vs unknown search space

5. Offline search
vs online search 

(some of) these assumptions are not admissible for several problems
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Online Search Problems

• Almost all problems that we are discussed so far could be solved 
offline.

• State space is known and thus the agent can simulate the execution 
of all actions before acting
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Online Search Problems

• Online search is necessary for unknown environment

• Agent does not know what state exists or what action can do

• Exploration problem: agents uses actions as experiments to learn
enough to make decisions
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Online Search

• Competitive ratio: ratio between the cost of the path of the agent 
and the optimal path (computed in the known environment)

• Dead-ends: if the agent does not know the states it is possible to 
end in an irreversible state, that the agent does want to avoid
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Online vs Offline Search

• Offline Search: agents simulates the problem in advance, as the 
state space is known; if the agent ends in a dead-end it can “jump” 
to a new far-away state

• Online Search: agents perform actions as states are discovery by 
visiting them; transition to a new state can be costly, so local search
strategies are preferred (e.g., DFS)
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Online Search Example: Robot Exploration

• The robot is placed 
in a new unknown 
environment

• GOAL: map the 
entire environment 
as fast as possible
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Online Exploration
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Start from the initial 
map of the 

environment
(percepts from the 
starting position)



Online Exploration
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Identify the set of 
possible states that 
the agent can reach  
from its position q

q

p1 p2 p3



Online Exploration
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Compute the costs 
for each action 

(e.g. Manhattan 
distance)

q

p1 p2 p3

8 11 13



Online Exploration
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Compute an heuristic 
function h

(e.g. estimated 2D 
lidar beam with full-

range)

q

p1 p2 p3

8 11 13



Online Exploration

Sistemi Intelligenti Avanzati, 2020/21 76

Choose the most 
promising state 

according to a Search 
Strategy 

(e.g. Depth First 
Search)

q

p1 p2 p3

8 11 13



Online Exploration
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1. reach the location

2. update the search 
state with new 
knowledge, 

3. repeat

q

p1 p2 p3

8 11 13

p4 p5

13 6



Online Exploration

We solved exploration modeling it as an abstract search problem: 

1. Identify all reachable states from current location
1. Localization  

2. Compute Costs and Heuristics

3. Select most promising state according to a Search Strategy

4. Go there
1. Localization

2. Path Planning
1. Global Plan

2. Local Plan

5. Integrate new knowledge in the map
1. SLAM

6. Repeat from (1)
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Online Exploration

Some sub-problems are solved at the simultaneously

1. Identify all reachable states from current location
1. Localization  

2. Compute Costs and Heuristics

3. Select most promising state according to a Search Strategy

4. Go there
1. Localization

2. Path Planning
1. Global Plan

2. Local Plan

5. Integrate new knowledge in the map
1. SLAM – (mapping)

6. Repeat from (1)
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Online Exploration and Path Planning

• Some sub-problems are solved as Search problems as well (and 
involving other sub-subproblems)

• Path Planning
1. Global Plan

2. Local Plan
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Global path planning 
is modeled as a fully-

observable offline 
deterministic search 

problem 

(here solved with A*)



Online Exploration and Path Planning

• Some sub-problems are solved as Search problems as well (and 
involving other sub-subproblems)

• Path Planning
1. Global Plan

2. Local Plan
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Example
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